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Abstract

Forecasts support decision making in a variety of applications. Statistical models can produce 

accurate forecasts given abundant training data, but when data is sparse or rapidly changing, 

statistical models may not be able to make accurate predictions. Expert judgmental forecasts—

models that combine expert-generated predictions into a single forecast—can make predictions 

when training data is limited by relying on human intuition. Researchers have proposed a wide 

array of algorithms to combine expert predictions into a single forecast, but there is no consensus 

on an optimal aggregation model. This review surveyed recent literature on aggregating expert-

elicited predictions. We gathered common terminology, aggregation methods, and forecasting 

performance metrics, and offer guidance to strengthen future work that is growing at an 

accelerated pace.
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1. Introduction

Forecasting presents decision makers with actionable information that they can use to 

prevent (or prepare for) economic (Mak et al. [Mak], 1996; Shin et al. [Shi], 2013; Huang et 

al. [Hua], 2016), engineering (Guangliang [Gua], 1996; Zio [Zio], 1996; Neves & Frangopol 

[Nev], 2008), ecological (Borsuk [Bor], 2004; Failing et al. [Fai], 2004; Morales-Nápoles et 

al. [Mor], 2017; Johnson et al. [Joh2018], 2018), social (Craig et al. [Cra], 2001; Kläs et al. 

[Kla], 2010; Cabello et al. [Cab], 2012), and public health burdens (Alho [Alh], 1992; Evans 

et al. [Eva], 1994).

Advances in computing power made statistical forecasts, models that take as input a 

structured data set and output a point estimate or probability distribution, a powerful tool 

(Al-Jarrah et al. [Jar], 2015; Kune et al. [Kun], 2016; Wang et al. [Wan], 2016). Statistical 

models exploit correlations between data to find patterns, but when data is rapidly changing, 

sparse, or missing completely, the accuracy of these models can suffer. Judgmental forecasts 

attempt to overcome data limitations present in statistical models by eliciting predictions 

from experts (Clemen & Winkler [Cle], 1986; Genest, Zidek, et al. [Gen], 1986; Clemen 

[Cle], 1989). Experts are able to make predictions without structured data, and instead, rely 

on their experience and contextual knowledge of the prediction task. Expert forecasts are 

most readily found in finance, business, and marketing (Petrovic et al. [Pet], 2006; Kabak & 

Ülengin [Kab], 2008; Franses [Fra], 2011; Seifert & Hadida [Sei], 2013; Shi, 2013; Song et 

al. [Son], 2013; Alvarado-Valencia et al. [Alv], 2017; Baecke et al. [Bae], 2017). These 

fields focus on decision makers and their ability to make predictions from data that cannot 

easily be collected and fed to a statistical model. Other areas of active research in expert 

opinion are quality assurance (Kla, 2010), politics (Graefe et al. [Gra], 2014a; Graefe et al. 

[Gra], 2014b; Satopää et al. [Sat], 2014; Graefe [Gra], 2015; Cai et al. [Cai], 2016; Gra, 

2018; Hanea et al. [Han], 2018; Wang & Zhang [Wan], 2018), economics (Mak, 1996; Shi, 

2013; Hua, 2016), engineering (ZIO1996127; Cra, 2001; Ren-jun & Xian-zhong [Ren], 

2002; Jin et al., 2007; Tartakovsky [Tar], 2007; Nev, 2008; Wang et al. [Wan], 2008; Brito et 

al. [Bri], 2012; Brito & Griffiths [Bri], 2016; Hathout et al. [Hat], 2016), sports (Gu et al. 

[Gu], 2016), sociology (Adams et al. [Ada], 2009; Cab, 2012), meteorological (Abramson et 

al. [Abr], 1996), ecological (Bor, 2004; Fai, 2004; Cooke et al. [Coo], 2014a; Joh2018, 

2018), environmental science (Zio & Apostolakis [Zio], 1997; Li et al. [Li], 2012; Mantyka-

Pringle et al. [Man], 2014; Mor, 2017), and public health (Alh, 1992; Evans et al., 1994; 

Kurowicka et al. [Kur], 2010; Jana et al. [Jan], 2019). The diversity and breadth of 

applications underscore the importance of expert opinion in a wide variety of disciplines.

Combining expert judgment can be divided into two goals: (i) to increase forecast accuracy 

(Bates & Granger, 1969; Granger & Ramanathan, 1984) and/or (ii) create a predictive 

‘consensus’ distribution that individual experts agree represents their collective thoughts 

(Stone, 1961; Gen, 1986; Cooke et al. [Coo], 1991). Models focused on combining experts 

to boost accuracy view experts as additional sources of information or predictive models that 

can be combined with other expert and statistical predictions. To evaluate forecasting 

accuracy, ground truth data is collected and compared against model predictions by using 

quantitative metrics and experimental evidence. Building a consensus distribution has a 

different goal—building a predictive distribution that optimally represents experts’ collective 

McAndrew et al. Page 2

Wiley Interdiscip Rev Comput Stat. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



uncertainty. Success is typically measured on a qualitative scale. For example, success may 

be measured by the type of data needed from experts to build a distribution and whether the 

algorithm used to combine expert judgment accurately represents their collective opinions. 

Whether to combine expert judgement for improved accuracy or consensus depends on the 

application. Improving accuracy will usually require ground truth data and expert-elicited 

predictions. In a data-sparse scenario, consensus requires the ability to solicit expert 

judgements and combine them in a way representative of the group without necessarily 

appealing to quantitative metrics.

Research combining expert opinion to produce an aggregate forecast has grown rapidly, and 

a diverse group of disciplines apply combination forecasting techniques. Cross-

communication between different applied areas of combination forecasting is minimal, and 

as a result, different scientific fields are working in parallel rather than together. The same 

mathematical ideas in combination forecasting are given different labels depending on 

application. For example, the literature refers to taking an equally-weighted average of 

expert forecasts as: equal-weighting (Sarin [Sar], 2013; Coo, 2014a; Han, 2018), unweighted 

(Gra, 2015), and 50–50 weighting (even when more than two forecasts are averaged) (Alv, 

2017).

This review focuses on methods for aggregating expert judgments. The aim is to survey the 

current state of expert combination forecasting literature, propose a single set of labels to 

frequently used mathematical details, look critically at how to improve expert combination 

forecasting research, and suggest future directions for the field.

We map key terminology used in combining expert judgemental forecasts and consolidate 

related definitions. A textual analysis of articles highlights how combination forecasting 

techniques have evolved. A prespecified list of questions was asked of every manuscript: 

whether point predictions or predictive densities were elicited from experts, methods of 

aggregating expert predictions, experimental design for evaluating combination forecasts 

and how forecasts were scored (evaluated). We tabulated techniques for evaluating forecasts 

and condensed terms referring to the same evaluative metric.

Section 2 gives a brief historical background of combination forecasting and current 

challenges. Section 3 describes our literature search, how articles were included in our 

analysis set, and our analysis. Section 4 reports results and section 5 discusses common 

themes, terminology, advocates for key areas that need improvement, and recommends 

future directions for aggregating expert predictions.

2. Background

2.1. Human judgmental forecasting

Judgmental forecasting models—predictions elicited from experts or non-expert crowds and 

combined into a single aggregate forecast—have a long history of making well calibrated 

and accurate predictions (Edmundson, 1990; Bunn & Wright, 1991; Lawrence & O’Connor, 

1992; O’Connor et al., 1993). Advances in judgmental forecasting take two paths: building 

McAndrew et al. Page 3

Wiley Interdiscip Rev Comput Stat. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sophisticated schemes for combining predictions (Cle, 1989; Clemen & Winkler, 1999a; Cle, 

2008) and eliciting better quality predictions (Helmer, 1967; Ayyub [Ayy], 2001).

Initial combination schemes showed an equally-weighted average of human-generated point 

predictions can accurately forecast events of interest (Galton, 1907). More advanced 

methods take into account covariate information about the forecasting problem and about the 

forecasters themselves (for example weighting experts on their past performance). 

Compared to an equally-weighted model, advanced methods show marginal improvements 

in forecasting performance (Winkler, 1971; McLaughlin, 1973; Armstrong [Arm], 1985; 

Cle, 1989; Fischer & Harvey, 1999).

In this work we will study combinations of expert predictions. Combining non-expert 

predictions often falls into the domain of crowdsourcing, and crowdsourcing methods tend 

to focus on building a system for collecting human-generated input rather than on the 

aggregation method (section 2.5 discusses open challenges to a crowdsourcing approach).

Past literature suggests experts make more accurate forecasts than novices (Armstrong, 

1983; Alexander Jr, 1995; Spence & Brucks, 1997; Clemen & Winkler, 1999a; Armstrong, 

2001a; Lawrence et al., 2006; French, 2011), and a typical definition of an expert is someone 

whose forecast you would adopt because you consider your knowledge about a forecasting 

target a subset of the expert’s knowledge (DeGroot, 1988). Several reasons could contribute 

to an expert’s increased accuracy: domain knowledge, the ability to react to and adjust for 

changes in data, and the potential to make context-specific predictions in the absence of data 

(Armstrong, 1983; Alexander Jr, 1995; Spence & Brucks, 1997; Lawrence et al., 2006). The 

increased accuracy of expert opinion led some researchers to exclusively study expert 

forecasts (Armstrong, 2001a; French, 2011; Genre et al., 2013), however crowdsourcing—

asking large volumes of novices to make predictions and using a simple aggregation scheme

—rivals expert-generated combination forecasts (Howe [How], 2006; Lintott et al., 2008; 

Prill et al., 2011). Whether or not expert or non-expert predictions are solicited, judgmental 

forecasting agrees that human judgment can play an important role in forecasting.

Judgmental forecasts can have advantages over statistical forecasting models. Human 

intuition can overcome sparse or incomplete data issues. Given a forecasting task with little 

available data, people can draw on similar experiences and unstructured data to make 

predictions, whereas statistical models need direct examples and structured data to make 

predictions. When data is plentiful and structured, statistical models typically outperform 

human intuition (Meehl, 1954; Kleinmuntz, 1990; Yaniv & Hogarth, 1993). But whether a 

statistical or judgemental forecast is best depends on the circumstances.

An understanding of the type of forecasts that models can produce and a mathematical 

description of a combination forecast can clarify how judgmental data, number of 

forecasters, and the combination scheme interact.

2.2. A framework for combination forecasting

Forecasting models can be statistical, mechanistic, or judgmental. We define a forecasting 

model ℳ as a set of probability distributions over all possible events. Each probability 

McAndrew et al. Page 4

Wiley Interdiscip Rev Comput Stat. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



distribution is typically assigned a vector (θ), called the model’s parameters, that is used to 

differentiate one probability distribution from another ℳ = {Pθ|θ ∈ Θ}, where Pθ is 

probability distribution for a specific choice of θ, and Θ are all possible choices of model 

parameters.

Models can produce two types of forecasts: point predictions or predictive densities. Point 

forecasts produce a single estimate of a future value (Bates & Granger, 1969; Granger & 

Ramanathan, 1984) and are frequently used because they are easier to elicit from experts and 

early work was dedicated to combining specifically point forecasts (Galton, 1907; Bates & 

Granger, 1969; Granger & Ramanathan, 1984). Probabilistic forecasts are more detailed. 

They provide the decision maker an estimate of uncertainty (probability distribution) over all 

possible future scenarios (Stone, 1961; Winkler, 1968, 1981; Gen, 1986; Dawid et al., 1995; 

Clemen & Winkler, 1999a; Ranjan & Gneiting, 2010; Gneiting, Ranjan, et al., 2013; Hora & 

Kardeş [Hor], 2015). Probabilistic densities can be thought of as more general than point 

forecasts. A point forecast can be derived from probabilistic forecast by taking, for example, 

the mean, median, or maximum a posteriori value. A probabilistic density assigning all 

probability mass to a single value can be considered a point forecast.

A combination forecast aggregates predictions, either point or probabilistic, from a set of 

models and produces a single aggregate forecast (Winkler, 1981; Gen, 1986; Clemen & 

Winkler, 1999a; Winkler et al., 2019). Given a set of models ℳ1,ℳ2, . . . ,ℳN, a 

combination model G : ℳ1 × ℳ2 × . . . × ℳN → ℱ maps the Cartesian product of all 

models onto a single class of suitable probability distributions (Gneiting, Ranjan, et al., 

2013). The goal of combination forecasting is to find an optimal aggregation function G ∈ 
G. Typically the model G is parameterized G = {Gυ|υ ∈ ϒ} such that finding an optimal G 
amounts to finding the parameter vector υ that produces an optimal forecast.

There are several ways to improve a combination model’s forecasting ability. Combination 

models can improve forecast accuracy by considering a more flexible class of aggregation 

functions (G). Soliciting expert opinion (versus novices) can be thought of as improving 

individual forecasts ℳ used as input into the combination model. Crowdsourcing takes a 

different approach to improve forecast accuracy (How, 2006; Abernethy & Frongillo, 2011; 

Brabham, 2013; “Crowdsourcing the Future: Predictions Made with a Social Network,” 

2014; Moran et al., 2016). These methods consider a simple class of aggregation functions G
and collect a large number of human-generated forecasts ℳ. By accumulating a large set of 

human-generated predictions, a crowdsourcing approach can create flexible models with a 

simple aggregation function.

This framework makes clear the goals of any combination forecasting model. Some focus on 

improving individual models ℳ, others focus on more flexible aggregation functions (G). In 

this work we will consider combination forecasting models that include expert-elicited 

forecasts as their raw material and pursued building more flexible aggregations models.
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2.3. A brief timeline of existing work

Francis Galton was one of the first to formally introduce the idea of combination 

forecasting. In the early 20th century, he showed aggregating point estimates from a crowd 

via an unweighted average was more accurate compared to individual crowd estimates 

(Galton, 1907). Galton’s work was empirical, but laid the foundation for exploring how a 

group of individual conjectures could be combined to produce a better forecast.

Since Galton, combination forecasting was mathematically cast as an opinion pool. Work in 

opinion pools began with Stone (Stone, 1961) in the early 1960s. He assumed a set of 

experts had an agreed upon utility function related to decision making, and that experts 

could each generate a unique probability distribution to describe their perceived future state 

of nature. To build a single combined forecast, Stone proposed a convex combination of 

each expert’s probability distribution over the future—an opinion pool. Equally weighting 

individual predictions would reproduce Galton’s model, and so the opinion pool was a more 

flexible way to combine expert opinions.

In the late 1960’s, Granger and Bates formalized the concept of an optimal combination 

forecast. In their seminal work (Bates & Granger, 1969), several methods were proposed for 

how to combine point predictions to reduce, as much as possible, the combined forecast’s 

variance. Methods for combining forecasts was further advanced by Granger and 

Ramanathan, and framed as a regression problem (Granger & Ramanathan, 1984). Work by 

Granger, Bates, and later Ramanathan inspired several novel methods for combining point 

forecasts (Coo, 1991; Wallis [Wal], 2011; Gneiting, Ranjan, et al., 2013; Hor, 2015). 

Combination forecasts often produce better predictions of the future than single models.

It wasn’t until the 1990’s that Cooke generalized the work of Stone and others, and 

developed an algorithm coined Cooke’s method, or the Classical Model (Cooke et al. [Coo], 

1988; Coo, 1991) for combining expert judgment. Every expert was asked to provide a 

probability distribution over a set of possible outcomes. To assign weights to experts, a 

calibration score statistic compared the expert’s probability distribution to an empirical 

distribution of observations. Experts were assigned higher weights if their predictions 

closely matched the empirical distribution. The calibration score was studied by Cooke and 

asymptotic properties were summarized based on Frequentist procedures (Coo, 1988; Cooke 

[Coo], 2015). Cooke’s model also assigned experts a weight of 0 for poor predictive 

performance, and if an expert’s performance was under some user-set threshold they were 

excluded from the opinion pool. Cooke’s model garnered much attention and has influenced 

numerous applications of combining expert opinion for forecasting (Zio, 1996; Clemen & 

Winkler [Cle], 2007; Cle, 2008; Bri, 2012; Sar, 2013; Coo, 2014b; Coo, 2014a; Coo, 2015; 

Hor, 2015; Hat, 2016; Bolger & Houlding [Bol], 2017; Mor, 2017; Han, 2018).

Alongside Frequentist approaches to combination forecasting, Bayesian approaches began to 

gain popularity in the 1970’s (Morris, 1974). In the Bayesian paradigm, a decision maker 

(called a supra Bayesian), real or fictitious, is asked to evaluate expert forecasts and combine 

their information into a single probability distribution (Hogarth, 1975; Keeney, 1976). The 

supra Bayesian starts with a prior over possible future observations and updates their state of 

knowledge with expert-generated predictive densities. Combination formulas can be 
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specified via a likelihood function ℓ meant to align expert-generated predictive densities with 

observed data. The difficulties introduced by a Bayesian paradigm are familiar. The choice 

of likelihood function and prior will affect how expert opinions are pooled. Past work 

proposed many different likelihood functions, and interested readers will find a plethora of 

examples in Genest and Zidek (Gen, 1986), and Clemen and Winkler (Cle, 1986; Cle, 1989; 

Clemen & Winkler, 1999a).

2.4. Recent work in combination forecasting

Recent work has shifted from combining point estimates to combining predictive densities. 

Rigorous mathematical theory was developed and framed the problem of combining 

predictive densities (Gneiting, Ranjan, et al., 2013). Work combining predictive densities 

showed results similar in spirit to Granger and Bates’ (Bates & Granger, 1969; Granger & 

Ramanathan, 1984) work on combining point predictions. Ranjan and Gneiting (Ranjan & 

Gneiting, 2010; Gneiting, Ranjan, et al., 2013) showed a set of calibrated predictive 

distributions, when combined using a linear pool, necessarily leads to an overdispersed and 

therefore miscalibrated combined distribution. This mimics Granger and Bates’ results 

(Bates & Granger, 1969). They showed combining unbiased point predictions can lead to a 

combination method that makes biased point estimates.

This work in miscalibrated linear pools inspired new methods for recalibrating forecasts 

made from a combination of predictive densities. To recalibrate, authors recommend 

transforming the aggregated forecast distribution. The Spread-adjusted Linear Pool (SLP) 

(Berrocal et al. [Ber], 2007; Glahn et al. [Gla], 2009; Kleiber et al. [Kle], 2011) transforms 

each individual distribution before combining, the Beta Linear Pool (BLP) applies a beta 

transform to the final combined distribution (Ranjan & Gneiting, 2010; Gneiting, Ranjan, et 

al., 2013), and a more flexible infinite mixture version of the BLP (Bassetti et al., 2018), 

mixture of Normal densities (Baran & Lerch, 2018), and empirical cumulative distribution 

function (Garratt et al., 2019) also aim to recalibrate forecasts made from a combination of 

predictive densities.

Machine learning approaches assume a broader definition of a model as any mapping that 

inputs a training set and outputs predictions. This allows for more general approaches to 

combining forecasts called: ensemble learning, meta-learning, or hypothesis-boosting in 

machine learning literature. Stacking and the super-learner approach are two active areas of 

machine learning research to combine models. Stacked generalization (stacking) (Wolpert 

[Wol], 1992) proposes a mapping from out-of-sample predictions made by models (called 

base-learners) to a single combination forecast. The function that combines these models is 

called a generalizer and can take the form of any regression model, so long as it maps model 

predictions into a final ensemble prediction. The super-learner ensemble takes a similar 

approach to stacking (Van der Laan et al. [Van], 2007; Polley & Van Der Laan [Pol], 2010). 

Like stacking, the super-learner takes as input out-of-sample predictions from a set of 

models. Different from stacking, the super-learner algorithm imposes a specific form for 

aggregating predictions, a convex combination of models, such that the weights assigned to 

each model minimize an arbitrary loss function that includes the super-learner predictions 

and true outcomes of interest. By restricting how predictions are aggregated, super-learner is 
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guaranteed better performance under certain conditions (Van, 2007; Pol, 2010). Stacked and 

super-learner models often perform better than any individual forecasts and their success has 

led to applying them to many different problems (Sakkis et al. [Sak], 2001; Che et al. [Che], 

2011; Wang et al. [Wan], 2011; Syarif et al. [Sya], 2012), however the machine learning 

community is debating issues with stacked models (Ting & Witten [Tin], 1999) and how 

they can be improved (Džeroski & Ženko [Dze], 2004).

2.5. Open challenges in combination forecasting

Combination forecasting has three distinct challenges: data collection, choice of 

combination method, and how to evaluate combination forecasts.

Crowdsourcing (How, 2006; Abernethy & Frongillo, 2011; Brabham, 2013; “Crowdsourcing 

the Future: Predictions Made with a Social Network,” 2014; Moran et al., 2016) and expert 

elicitation (Amara & Lipinski, 1971; O’Hagan et al., 2006; Yousuf [You], 2007) are two 

approaches to collecting judgemental forecasts that attempt to balance competing interests: 

the quantity and quality of judgemental predictions. Crowdsourcing trades expertise for a 

large number of contributors. Expert judgemental forecasting takes the opposite approach 

and focuses on a small number of independent high-quality forecasts. Both methods try to 

enlarge the space of potential predictions so that a combination method can create a more 

diverse set of predictive densities over future events (Bates & Granger, 1969; Dietterich et 

al., 2002).

Combination methods are faced with developing a set of distributions over events of interest 

that take predictions as input and produce an aggregated prediction aimed at optimizing a 

loss function. Major challenges are how to account for missing predictions (Capistrán & 

Timmermann, 2009), correlated experts (armstrong1985long; Bunn [Bun], 1979, 1985), 

and how to ensure the combination forecast remains calibrated (Ber, 2007; Gla, 2009; 

Ranjan & Gneiting, 2010; Kle, 2011; Gneiting, Ranjan, et al., 2013; Garratt et al., 2019).

No normative theory for how to combine expert opinions into a single consensus distribution 

has been established, and a lack of theory makes comparing the theoretical merits of one 

method versus another difficult. Instead, authors compare combination methods using 

metrics that measure predictive accuracy: calibration, and sharpness (Dawid, 2007; Gneiting 

& Raftery, 2007; Gneiting & Ranjan, 2011; Jolliffe & Stephenson, 2012; Hor, 2015). 

Combination methods that output point forecasts are compared by measuring the distance 

between a forecasted point estimate and empirical observation. Probabilistic outputs are 

expected to be calibrated and attempt to optimize sharpness, or the concentration of 

probability mass over the empirical observations (Gneiting & Raftery, 2007; Gneiting & 

Ranjan, 2011; Jolliffe & Stephenson, 2012; Hor, 2015).

2.6. Past Reviews on Combination forecasting

Our review underlines the digital age’s impact on combination forecasting. Collecting expert 

opinion in the past required one-on-one meetings with experts: in person, by phone, or 

mailed survey, and the internet decreased the burden of eliciting expert opinion by using 

online platforms to ask experts for their opinion (How, 2006). Past work focused on using 
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statistical models to combine forecasts, but increases in computing power broadened the 

focus from statistical models to machine-learning techniques. Our review explores how the 

digital age transformed combination forecasting and is an updated look at methods used to 

aggregate expert forecasts.

Many excellent past reviews of combination methods exist. Genest and Zidek give a broad 

overview of the field and pay close attention to the axiomatic development of combination 

methods (Gen, 1986). Clemen and Winkler wrote three reviews of aggregating judgmental 

forecasts (Cle, 1986; Cle, 1989; Clemen & Winkler, 1999a). The most cited manuscript 

overviews behavioral and mathematical approaches to aggregating probability distributions, 

reviews major contributions from psychology and management science, and briefly reviews 

applications. These comprehensive reviews center around the theoretical developments of 

combination forecasting and potential future directions of the science. Our work is an 

updated, and more applied, look at methods for aggregating expert predictions.

3. Methods

3.1. Search algorithm

The Web of Science database was used to collect articles relevant to combining expert 

prediction. Expert was defined by the authors of each manuscript, and we did not impose 

any restrictions on how expert was defined. The search string entered into Web of Science 

on 2019–03-06 was (expert* or human* or crowd*) NEAR judgement AND (forecast* 
or predict*) AND (combin* or assimilat*) and articles were restricted to the English 

language. All articles from this search were entered into a database. Information in this 

article database included: the author list, title of article, year published, publishing journal, 

keywords, and abstract (full database can be found at https://github.com/tomcm39/

AggregatingExpertElicitedDataForPrediction).

To decide if an article was related to combining expert judgement, two randomly assigned 

reviewers (co-authors) read the abstract and were asked if the article should be included for 

analysis (in-scope) or excluded (out of scope). We defined an article as in-scope if it elicited 

expert judgments and combined them to make a prediction about natural phenomena or a 

future event. An article moved to the next stage if both reviewers agreed the article was in-

scope. If the two reviewers disagreed, the article was sent to a randomly assigned third 

reviewer to act as a tie breaker and was considered in scope if this third reviewer determined 

the article was in-scope.

Full texts were collected for all in-scope articles. In-scope full texts were divided at random 

among all reviewers for a detailed reading. Reviewers were asked to read the article and fill 

out a prespecified questionnaire (Table 4). The questionnaire asked reviewers to summarize: 

the type of target for prediction, the methodology used, the experimental setup, and 

terminology associated with aggregating expert opinion. If after a detailed review the article 

is determined to be out of scope it was excluded from analysis. The final list of articles are 

called analysis-set articles.
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3.2. Analysis of full text articles

From all analysis-set articles, abstract text was split into individual words, we removed 

English stop words—a set of common words that have little lexical meaning—that matched 

the Natural Language Toolkit (NLTK)’s stop word repository (Loper & Bird [Lop], 2002), 

and the final set of non-stopwords were stemmed (Willett [Wil], 2006).

A univariate analysis: (i) counted the number of times a word w appeared in abstract text per 

year nw(t), (ii) the total number of words among all abstracts in that year (Nt), and (iii) the 

frequency a word appeared over time Nw = ∑t nw(t). If a word w did not appear in a given 

year it received a count of zero (nw(t) = 0).

Words were sorted by Nw and a histogram was plotted of the top 5% most frequently 

occurring words in abstract text. Among the top 12 most frequently occurring words, we 

plotted the proportion (nw(t)/Nw) of each word over time.

Full text articles were scanned for key terms related to aggregating expert judgments. 

Evaluation metrics, a preferred abbreviation, related names, whether the metric evaluated a 

binary or continuous target, and formula to compute the metric was included in a table 

(Table 3). Terms specific to aggregating judgmental data were grouped by meaning and 

listed in a table (Table 1) along with a single definition. If multiple terms mapped to the 

same concept, our preferred label was placed at the top.

Frequencies and percents were computed for ‘Yes/No’ prespecified questions related to 

analysis-set articles (Statistics are presented in Table 2 and the list of all questions can be 

found in Table 4). Questions with text answers were summarized in the results.

4. Results

4.1. Search results

The initial Web of Science search returned 285 articles for review. After random assignment 

to two reviewers, 218 articles were agreed to be out of scope. The most frequent reasons for 

exclusion were the lack of experts used for prediction or the use of experts to revise, rather 

than directly participate in generating, forecasts. The 67 in-scope articles come from 50 

articles two reviewers agreed to be in-scope, and 17 out of 74 articles a randomly assigned 

third reviewer considered in-scope. Full text analysis determined another 14 articles out of 

scope, and the final number of analysis-set articles was 53 (Fig. 1).

Analysis set articles were published from 1992 to 2018. Publications steadily increase in 

frequency from 1992 until 2011. After 2011, publication rates rapidly increase until 2018 

(Fig. 2).

Analysis-set articles were published in 34 journals, and the top publishing journals are: the 

International Journal of Forecasting (4 articles), Reliability Engineering & System Safety (3 

articles), and Risk Analysis and Decision Analysis (2 articles each). Combination 

forecasting articles often emphasize the role of decision makers in forecasting, and these 

top-publishing journals sit at the intersection of forecasting and decision sciences.
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The top 10 most frequent words found in articles’ abstracts are related to our initial search: 

“expert”, “judgment”, “forecast”, “combin*”, and “predict”. Words related to modeling and 

methodology are also frequent: “model”, “method”, “approach”, “predict”. The word 

“assess” appears less frequently in abstracts and the word “accuracy” even less frequent 

(Fig. 3). The proportion of words: “expert”, “forecast”, “model”, “method”, and “data” 

appear intermittently in the 1990s and appear more consistently in the 2000s (Fig. 4). The 

words “probabili*” and “predict” occur in abstract text almost exclusively after the year 

2000. The rise of “forecasts”, “model”, and “data” suggests data-driven combination 

forecasting schemes may be on the rise, and the uptick of “probabil*” and “predict” could be 

caused by an increase in aggregating expert probability distributions (rather than point 

forecasts).

Using expert judgement and data-driven models for forecasting are becoming more popular, 

and may suggest literature is focused on combining expert judgment to increase forecasting 

accuracy instead of building a consensus distribution. There is a potential gap in expert 

judgement used for probabilistic forecasting, but we did observe an increase in the frequency 

of the word-stem “probabil*”.

4.2. Forecasting terminology

Forecasting terminology centered around six distinct categories (Table 1): frameworks for 

translating data and judgment into decisions (Forecasting support system, probabilistic 

safety assessment), broad approaches to aggregating forecasts (behavioral aggregation, 

mathematical combination, integrative judgment), specific ways experts can provide 

predictions (integrative judgment, judgemental adjustment), terms related to weighting 

experts (equal weighted linear pool, nominal weights), different names for classical models 

(Cooke’s method, mixed estimation), and philosophical jargon related to combination 

forecasting (Laplacian principle of indifference, Brunswik lens model).

Few concepts in the literature are assigned a single label, the majority are given multiple 

labels. Some concepts’ labels are similar enough that one can be swapped for another. For 

example, equal-weighted, 50–50, and unweighted all refer to assigning equal weights to 

expert predictive densities in a linear opinion pool. Other concepts are assigned different 

labels, for example forecasting support system and adaptive management, that may make it 

difficult to understand both terms refer to the same concept.

To condense terminology related to combination forecasting, we identified and grouped 

together frequently occurring terms in the literature that describe the same combination 

forecasting concept and suggested a single label (Table 1).

4.3. Forecasting targets

Forecasting research focused on predicting categorical variables (34%) and time-series 

(40%), but the majority of articles attempted to predict a continuous target (68%) (Table. 2).

The type of forecasting target depended on the application. Ecological and meteorological 

articles (Abr, 1996; Bor, 2004; Tar, 2007; Kur, 2010; Li, 2012; Coo, 2014a; Man, 2014; Mor, 

2017; Joh2018, 2018; Wan, 2018) focused on continuous targets such as: the prevalence of 
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animal and microbial populations, deforestation, and climate change. Economics and 

managerial articles focused on targets like: the number of tourist arrivals, defects in 

programming code, and monthly demand of products (Fai, 2004; Kab, 2008; Shi, 2013; Son, 

2013; Hua, 2016). Political articles focused on predicting presidential outcomes, a 

categorical target (Hurley & Lior [Hur], 2002; Gra, 2014a; Gra, 2014b; Morgan [Mor], 

2014; Gra, 2015, 2018). Risk-related targets were continuous and categorical: the probability 

of structural damage, nuclear fallout, occupational hazards, and balancing power load (Zio, 

1996; Zio, 1997; Mu & Xianming [Mu], 1999; Cra, 2001; Ren, 2002; Nev, 2008; Wan, 

2008; Ada, 2009; Kla, 2010; Bri, 2012; Cab, 2012; Bri, 2016; Hat, 2016; Bae, 2017; Jan, 

2019). Public health papers predicted continuous targets over time, like forecasting 

carcinogenic risk (Eva, 1994) and US mortality rates (Alh, 1992).

Targets were often either too far in the future to assess, for example predicting precipitation 

changes in the next 1 million years (Zio, 1997), or related to a difficult-to-measure quantity, 

such as populations of animals with little or no monitoring (Bor, 2004; Man, 2014; Joh2018, 

2018). The majority of analysis-set articles placed more importance on the act of building a 

consensus distribution than studying the accuracy of the combined forecast (Eva, 1994; Abr, 

1996; Zio, 1996; Zio, 1997; Mu, 1999; Bor, 2004; Fai, 2004; Cle, 2007; Tar, 2007; Kab, 

2008; Nev, 2008; Wan, 2008; Ada, 2009; Kla, 2010; Kur, 2010; Bri, 2012; Cab, 2012; Li, 

2012; Shi, 2013; Son, 2013; Baron et al. [Bar], 2014; Coo, 2014a; Man, 2014; Mor, 2014; 

Hor, 2015; Bri, 2016; Gu, 2016; Hat, 2016; Joh2018, 2018; Wan, 2018). It is important to 

note the ability of experts to build forecasts and support decision-making with very little, or 

any, observed data on targets of interest.

All articles defined a small number of specific forecasting targets. The majority of targets 

related to safety. Public health, ecology, and engineering applications focused on forecasting 

targets that, if left unchecked, could negatively impact human lives or the surrounding 

environment. For example, carcinogenic risk imposed by the concentration of chloroform 

found in drinking water (Eva, 1994). What differed between articles was whether ground 

truth data was collected on targets, or if no data was collected, that ground truth data could 

be collected in the near future.

4.4. Forecasting methodology

Articles were split into three groups, those that took (i) a Bayesian approach, (ii) Frequentist 

approach, or (iii) neither.

Articles taking a Bayesian approach accounted for 25% of analysis-set articles and 

emphasized how priors can compliment sparse data (Abr, 1996; Zio, 1997; Ren, 2002; Cle, 

2007; Tar, 2007; Nev, 2008; Bri, 2012; Man, 2014; Bri, 2016; Hua, 2016; Bol, 2017; Wan, 

2018). Many papers focused on assessing risk (Zio, 1997; Tar, 2007; Bri, 2012; Bri, 2016). 

For example, the risk of losing autonomous underwater vehicles was modeled using a 

Bayesian approach that incorporated objective environmental data and subjective 

probabilities of loss solicited from experts (Bri, 2012; Bri, 2016). Other papers assessed the 

impact of subsurface hydrology on water contamination (Tar, 2007), the risk of structural 

deterioration (Nev, 2008), and the economic risk associated with government expenditures 

(Wan, 2018).
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Bayesian methods involved beta-binomial models, Bayesian decision trees, mixture 

distributions, or Bayesian belief networks. For example, work by (Zio, 1997) used a linear 

pool to combine expert judgments. The probability density over the target of interest x was 

defined as

f(x) = ∑
e = 1

E
wefe(x ∣ D)

where we is a weight assigned to each expert and fe(x ∣ D) is the probability expert e places 

on x, having observed data D. The goal is to find weights we that optimize a loss function. 

They extended this linear pool model by assuming experts could observe different data 

based on the target of interest x. The new linear pool was defined as

f(x) = ∑
e = 1

E
g De ∣ x fe x ∣ De

where g(De|x) is the probability expert e observed data De. The goal is then to accurately 

compute g(De|x) and use this probability density to weight experts.

Often Bayesian models involved complicated posterior computations, requiring numerical 

integration to compute forecast probabilities. Past work suggested a Bayesian framework 

could better model subjective probabilities elicited from experts (Cle, 2007), however 

Frequentist techniques were used in almost 50% of articles.

Frequentist models for combining forecasts (Alh, 1992; Eva, 1994; Mak, 1996; Mu, 1999; 

Hur, 2002; Ren, 2002; Bor, 2004; Wan, 2008; Ada, 2009; Kla, 2010; Kur, 2010; Fra, 2011; 

Cab, 2012; Sei, 2013; Shi, 2013; Coo, 2014a; Gra, 2014b; Baldwin [Bal], 2015; Hor, 2015; 

Gu, 2016; Hat, 2016; Alv, 2017; Bae, 2017; Mor, 2017; Han, 2018; Jan, 2019) were 

typically convex combinations of expert judgment or linear regression models that included 

expert judgment as a covariate. Including expert judgment as a covariate in a linear 

regression model is related to judgemental bootstrapping (Armstrong, 2001b) and the 

Brunswik lens model (Hammond & Stewart, 2001). Both techniques are mentioned in 

analysis-set articles and rely on a Frequentist regression that divides human judgment into 

predictions inferred from data and expert intuition,

ye ∣ xe, β0, β, σ2 ∼ N β0 + β′xe, σ2

where y represents the expert’s forecast, N is a Normal distribution, xe is a vector of 

objective information about the target of interest, β are estimated parameters, and σ2 is 

argued to contain expert intuition. This model can then infer what covariates (xe) are 

important to expert decision making and to what extent expert intuition (σ2) is involved in 

prediction.
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Articles that did not use classic regression combined statistical predictions with qualitative 

estimates made by experts using fuzzy logic (an extension of traditional logic where 

elements can partially belong to many sets). Cooke’s method inspired articles to take a 

mixture model approach and weighted experts based on how well they performed on a set of 

ground-truth questions.

Articles using neither Bayesian or Frequentist models (Ren, 2002; Fai, 2004; Pet, 2006; 

Kab, 2008; Li, 2012; Hora et al. [Hor], 2013; Son, 2013; Bar, 2014; Gra, 2014a; Mor, 2014; 

Gra, 2015; Cai, 2016; Gra, 2018; Joh2018, 2018) resorted to: dynamical systems, simple 

averages of point estimates and quantiles from experts, and tree-based regression models. As 

a simplified example from (Joh2018, 2018), they aimed to predict the population of geese 

using a differential equation. The population of geese at time t + 1 (Nt+1) was modeled as

dNt + 1
dt = Ntr 1 −

Nt
K

θ
− ℎtNt

where probability distributions over parameters r, the intrinsic growth rate, θ, the density 

dependence, and ht, the harvest rate, could be estimated from data. To estimate the carrying 

capacity K, a probabilistic distribution was fit to expert judgments. A forecast of the geese 

population was generated by repeatedly sampling parameters (r, θ, ht, K) and integrating the 

differential equation.

The majority of models were parametric. Non-parametric models included: averaging 

quantiles, equally weighting expert predictions, and weighting experts via decision trees. 

These models allowed the parameter space to grow with increasing numbers of judgmental 

forecasts. Parametric models included: linear regression, ARIMA, state space models, belief 

networks, the beta-binomial model, and neural networks. Expert judgments, when combined 

and used to forecast, showed positive results in both nonparametric and parametric models. 

Parametric Bayesian models and non-parametric models could better cope with sparse data 

than a parametric Frequentist model. Bayesian models used a prior to lower model variance 

when data was sparse and non-parametric models could combine a expert judgments without 

relying on a specific form for the aggregated predictive distribution.

Authors more often proposed combining expert-generated point estimates compared to 

predictive distributions. A diverse set of models were proposed to combine point estimates: 

regression models (linear regression, logistic regression, ARIMA, exponential smoothing), 

simple averaging, and neural networks (Mak, 1996; Ada, 2009; Cab, 2012; Bar, 2014; Gra, 

2014b), and fuzzy logic (Ren, 2002; Pet, 2006; Kab, 2008; Jan, 2019). Authors that 

combined predictive densities focused on simpler combination models.

Most predictive distributions were built by asking experts to provide a list of values 

corresponding to percentiles. For example, a predictive density would be built by asking 

each expert to provide values corresponding to the 5%, 50% (median), and 95% percentiles. 

Combination methods either directly combined these percentiles by assigning weights to 

each expert density (Zio, 1997; Kab, 2008; Sar, 2013; Bri, 2016; Cai, 2016; Bol, 2017; Mor, 
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2017; Han, 2018), or built a continuous predictive distribution that fit these discrete points 

(Abr, 1996; Fai, 2004; Nev, 2008; Wan, 2008; Kur, 2010; Bri, 2012).

4.5. Forecasting evaluation metrics

Only 42% of articles evaluated forecast performance using a formal metric. Formal metrics 

used in analysis-set articles are summarized in Table 3. The articles that did not include a 

metric to compare forecast performance either did not compare combination forecasts to 

ground truth, evaluated forecasts by visual inspection, or measured success as the ability to 

combine expert-generated forecasts. Among articles that did evaluate forecasts, most articles 

focused on point estimates (68%) versus probabilistic forecasts (23%), and two articles did 

not focus on point or probabilistic forecasts from experts.

The most commonly used metrics to evaluate point forecasts were: the Brier score (mean 

squared difference between the forecast and observed outcome), mean absolute (and 

percentage) error, and root mean square error. Even when predictive densities were 

combined, the majority of articles output and evaluated point estimates.

A small number of articles combining probability distributions used metrics that evaluated 

aggregated forecasts based on density, not point forecasts. Expert forecasts were evaluated 

using relative entropy and a related metric, the calibration score (see Table 3 for details). 

These metrics were first introduced (and not part of the analysis set articles) by Cooke (Coo, 

1988; Coo, 1991).

The logscore is one of the most cited proper scoring rules for assessing calibration and 

sharpness (Gneiting & Raftery, 2007; Gneiting & Ranjan, 2011; Hor, 2015) for predictive 

densities, but was not used in any of the analysis-set articles. Instead, analysis-set articles 

emphasized point estimates and used metrics to evaluate point forecasts.

Three articles conducted an experiment but did not use any formal metrics to compare the 

results. Two articles used no evaluation and one article visually inspected forecasts.

4.6. Experimental design

Among all analysis-set articles, 43% conducted a comparative experiment (Alh, 1992; Mak, 

1996; Cra, 2001; Hur, 2002; Ren, 2002; Pet, 2006; Fra, 2011; Hor, 2013; Sei, 2013; Gra, 

2014a; Gra, 2014b; Sat, 2014; Bal, 2015; Gra, 2015; Cai, 2016; Hua, 2016; Alv, 2017; Bae, 

2017; Bol, 2017; Mor, 2017; Gra, 2018; Han, 2018; Jan, 2019). We defined a comparative 

experiment as an evaluation of two or more models using a formal metric, like those found 

in Table 3.

Articles compared: (i) traditional statistical models to models that combined expert 

judgments (Pet, 2006; Gra, 2014a; Mor, 2017; Han, 2018), (ii) individual experts’ 

performance vs. aggregated expert performance (Gra, 2014a; Gra, 2014b; Gra, 2015; Bol, 

2017; Gra, 2018), and (iii) different models for combining expert judgments (Mak, 1996; 

Cra, 2001; Hur, 2002; Hor, 2013; Sei, 2013; Sat, 2014; Bal, 2015; Bae, 2017; Jan, 2019). 

The type of statistical models compared to expert judgement depended on if the target was 

binary or continuous. For binary targets, logistic regression, K-nearest neighbors, neural 
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networks, and discriminant analysis was fit to training data and used to make predictions. 

For continuous targets, ARIMA, neural networks, the median and trimmed mean, and 

parametric regression models were fit to training data. Statistical models tended to perform 

worse than ensembles that included expert judgment. But when past work compared 

statistical models against ensembles, they built ensembles from a combination of statistical 

forecasts and expert judgment. It isn’t clear if the ensemble of statistical models plus expert 

judgment is because of the added expertise or because ensembles tend to perform better than 

any of the individual models that are a part of the ensemble.

Other literary sources focused on comparing an aggregated expert judgment model to 

individual responses. The majority of results found that the ensemble performed better, but 

there were cases when individuals outperformed the aggregated model (Mor, 2017). Worse 

aggregated performance was attributed to some experts giving very poor, “outlier-like”, 

estimates. Guarding against outlier was also the main message of (Hor, 2013). They found 

aggregating via the median (robust to outliers) outperformed a simple average.

Equal weighting was a common benchmark used as a comparison to a novel aggregation 

method. Some work compared novel aggregation methods to a Delphi technique (Cai, 2016), 

prediction market (Gra, 2014a; Gra, 2014b; Gra, 2018), and regression models (Mak, 1996). 

Novel models of aggregation, compared to equal weighting, performed better when expert 

predictions were simulated (Hur, 2002; Hor, 2013; Bal, 2015; Bol, 2017). Models performed 

similar to simpler aggregation models when trained on real expert output (Alh, 1992; Mak, 

1996; Cra, 2001; Ren, 2002; Pet, 2006; Fra, 2011; Sei, 2013; Gra, 2014a; Gra, 2014b; Sat, 

2014; Gra, 2015; Cai, 2016; Hua, 2016; Alv, 2017; Bae, 2017; Mor, 2017; Gra, 2018; Han, 

2018; Jan, 2019).

Many articles did not evaluate their forecasting methods because no ground truth data exists. 

For example, articles would ask experts to give predictions for events hundreds of years in 

the future (Zio, 1996; Zio, 1997). Articles that didn’t evaluate their combined forecast but 

did have ground truth data concluded that the predictive distribution they created was 

“close” to a true distribution. Still other articles concluded their method successful if it could 

be implemented at all.

4.7. Training data

Rapidly changing training data—data that could change with time—appeared in 41% of 

articles. Data came from finance, business, economics, and management and predicted 

targets like: monthly demand of products, tourist behavior, and pharmaceutical sales (Pet, 

2006; Wan, 2008; Kla, 2010; Fra, 2011; Bae, 2017). In these articles, authors stress experts 

can add predictive power by introducing knowledge not used by statistical models, when the 

quality of data is suspect, and where decisions can have a major impact on outcomes. The 

rapidly changing environment in these articles is caused by consumer/human behavior.

Articles applied to politics stress that experts have poor accuracy when forecasting complex 

(and rapidly changing) systems unless they receive rapid feedback about their forecast 

accuracy and have contextual information about the forecasting task (Gra, 2014a; Sat, 2014; 
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Gra, 2015, 2018). Political experts, it is argued, receive feedback by observing the outcome 

of elections and often have strong contextual knowledge about both candidates.

Weather and climate systems were also considered datasets that rapidly change. The 

Hailfinder system relied on expert knowledge to predict severe local storms in eastern 

Colorado (Abr, 1996). Weather systems are rapidly changing environments, and this 

mathematical model of severe weather needed training examples of severe weather. Rather 

than wait, the Hailfinder system trained using expert input. Expert knowledge was important 

in saving time and money, and building a severe weather forecasting system that worked.

Ecology articles solicited expert opinion because of sparse training data, a lack of sufficient 

monitoring of wildlife populations, or to assign subjective risk to potential emerging 

biological threats (Kur, 2010; Li, 2012; Man, 2014)

Manuscripts that explicitly mention the training data describe the typical statistical model’s 

inability to handle changing or sparse data, and suggest expert predictions may increase 

accuracy (Sei, 2013; Son, 2013).

4.8. Number of elicited experts and number of forecasts made

Over 50% of articles combined forecasts from less than 10 experts. (Fig. 5). Several articles 

describe the meticulous book-keeping and prolonged time and effort it takes to collect expert 

judgments. The costs needed to collect expert opinion may explain the small number of 

expert forecasters.

Two distinct expert elicitation projects produced articles that analyzed over 100 forecasters. 

The first project (Sei, 2013) asked experts from music record labels to predict the success 

(rank) of pop singles. Record label experts were incentivized with a summary of their 

predictive accuracy, and an online platform collected predictions over a period of 12 weeks.

One of the most successful expert opinion forecasting systems enrolled approximately 2000 

participants and was called the Good Judgement Project (GJP) (Ungar et al. [Ung], 2012; 

Mellers et al. [Mel], 2014; Sat, 2014). Over a period of 2 years, an online platform was used 

to ask people to assign a probability to the occurrence of geo-political events and to self-

assess their level of expertise on the matter. Participants were given feedback on their 

performance and how to improve with no additional incentives. Both projects that collected 

a large number of forecasters have common features. An online platform was used to 

facilitate data collection, and questions asked were simple, either binary (yes/no) questions 

or to rank pop singles. Both project incentivized participants with feedback of their 

forecasting performance.

Close to 80% of articles reported less than 100 total forecasts (Fig. 6) and studies reporting 

more than 104 forecasts were simulation based (except the GJP). Recruiting a small number 

of experts did not always result in a small number of forecasts. Authors assessing the 

performance of the Polly Vote system collected 452 forecasts from 17 experts (Gra, 2014a; 

Gra, 2015, 2018), and a project assessing the demand for products produced 638 forecasts 

from 31 forecasters (Alv, 2017).
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One simulation study varied how many experts were aggregated and compared forecasting 

performance (Hor, 2013). This work studied an increasing number of experts that were (i) 

independent and well-calibrated to the forecasting target, and (ii) correlated to one another 

and overconfident about their forecast. Results showed that an optimal choice of aggregation 

method depended on the number of experts and whether they were correlated and calibrated 

to the target. Experts who are correlated and over confident (which the authors have reported 

is closer to what they see in practice) produce less calibrated aggregated forecasts. The 

choice of mean vs. median quantile aggregation showed a small improvement in calibration.

The time and energy required to collect expert opinion is reflected in the low number of 

forecasters. Some studies did succeed to produce many more forecasts than recruited 

forecasters, and they did so by using an online platform, asking simpler questions, and 

giving forecasters feedback about their forecast accuracy.

5. Discussion

Combining expert predictions for forecasting continues to shows promise, however rigorous 

experiments that compare expert to non-expert and statistical forecasts are still needed to 

confirm the added value of expert judgement. The most useful application in the literature 

appeals to a mixture of statistical models and expert prediction when data is sparse and 

evolving. Despite the time, effort, and cost it takes to elicit expert-generated data, the wide 

range of applications and new methods show the field is growing. Authors also recognize the 

need to include human intuition into models that inform decision makers.

In any combination forecast, built from expert or statistical predictions, there is no consensus 

on how to best combine individual forecasts or how to compare one forecast to another 

(Table 3). In addition to methodological disagreements familiar to any combination 

algorithm, expert judgemental forecasts have the additional burden of collecting predictions 

made by experts. Expertise is subjective and subject-specific, and the literature has not 

settled on how to define expertise. An entire field is devoted to understanding how experts 

differ from non-experts (Dawid et al., 1995; Rikers & Paas, 2005; Farrington-Darby & 

Wilson, 2006; Ericsson & Ward, 2007; de Groot, 2014). Methods for collecting data from 

experts that are unbiased and in the least time-consuming manner is also an area of open 

inquiry. An investigator must spend time designing a strategy to collect data from experts, 

and experts themselves must make time to complete this prediction task. There is a vast 

literature on proper techniques for collecting expert-generated data (Normand et al. [Nor], 

1998; Ayy, 2001; Powell [Pow], 2003; Leal et al. [Lea], 2007; You, 2007; Martin et al. 

[Mar], 2012). Expert elicitation adds an additional burden to combination forecasting not 

present when aggregating purely statistical models.

We identified four key themes reiterated in combination forecasting literature: (i) the use of 

human intuition to aid statistical forecasts when data is sparse and rapidly changing, (ii) 

including experts because of their role as decision makers, (iii) using simpler aggregation 

models to combine predictive densities and more complicated models to combine point 

predictions, and (iv) the lack of experimental design and comparative metrics in many 

manuscripts.
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Many articles introduced expert judgment into their models because the data needed to train 

a statistical model was unavailable, sparse, or because past data was not a strong indicator of 

future behavior. When training data was available, researchers typically used expert 

forecasts to supplement statistical models. Authors argued that experts have a broader 

picture of the forecasting environment than is present in empirical data. If experts produced 

forecasts based on uncollected data, then combining their predictions with statistical models 

was a way of enlarging the training data. Expert-only models were used when data on the 

forecasting target was unavailable. Authors argued context-specific information available to 

experts and routine feedback about their past forecasting accuracy meant expert-only models 

could make accurate forecasts. Though we feel this may not be enough to assume expert-

only models can make accurate forecasts, without any training data these attributes allow 

experts to make forecasts when statistical models cannot.

Most articles in this review took a definition of expertise similar to Dawid and Degroot 

(Dawid et al., 1995). They considered experts those people with past experiences related to 

the target of interest, or those people the decision maker would consider more 

knowledgeable than themselves—subject matter experts. No analysis-set article explicitly 

defined expertise, but using Dawid’s definition, expertise should be thought of as context-

specific and tied to the forecasting target. Some forecasters may be better suited for different 

targets, different scenarios, or specific combinations of each.

Applications varied, but each field stressed the reason for aggregating forecasts from experts 

was due to decision-making under uncertainty. For example: deciding on how a company 

can improve their marketing strategy, what choices and actions can affect wildlife 

populations and our environment, deciding on the structural integrity of buildings and 

nuclear power plants. Numerous articles emphasized the role of decision making in these 

systems by naming the final aggregated forecast a decision maker.

A longer history of combining point forecasts (Galton, 1907; Bates & Granger, 1969; 

Granger & Ramanathan, 1984) has prompted advanced methods for building aggregated 

forecasts from point estimates. Simpler aggregation techniques, like linear pools, averaging 

quantiles, and rank statistics, were used when combining predictive densities. Besides the 

shorter history, simple aggregation models for predictive densities show comparable, and 

often, better results than more complicated techniques (Cle, 1989; Rantilla & Budescu, 

1999). The reasons why simple methods work so well for combining predictive densities is 

mostly empirical at this time (Makridakis & Winkler, 1983; Cle, 1989; Rantilla & Budescu, 

1999), but under certain scenarios, a simple average was shown to be optimal (Wallsten et 

al., 1997a; Wallsten et al., 1997b).

A small percentage of research took time to setup an experiment that could rigorously 

compare combination forecasting models. Most articles took a consensus distribution 

approach and measured success on whether or not the combination scheme could produce a 

forecast and inspected the results visually. In some cases visual inspection was used because 

ground truth data was not present, but in this case, a simulation study could offer insight into 

the forecasting performance of a novel combination method. No manuscripts compared 

predictions between forecasts generated by experts only, a combination of experts and 
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statistical models, and statistical models only. Past research is still unclear on the added 

value experts provide statistical forecasts, and whether expert-only models provide accurate 

results.

To support research invested in aggregating expert predictions and improve their rigorous 

evaluation, we recommend the following: (i) future work spend more time on combining 

probabilistic densities and understanding the theoretical reasons simple aggregation 

techniques outperform more complicated models, when appropriate (ii) authors define an 

appropriate metric to measure forecast accuracy and develop rigorous experiments to 

compare novel combination algorithms to existing methods. If not feasible we suggest a 

simulation study that enrolls a small, medium, and large number of experts to compare 

aggregation models. We also suggest (iii) authors carefully define expertise. Expertise 

should be defined in enough detail so that others can apply the same set of criteria to a novel 

pool of potential judgmental forecasters.

We recommend that the two goals of combining expert judgment begin to intersect. 

Historical models of meteorological phenomena, and more recent human-in-the-loop 

research point to more accurate and understandable models by involving experts/decision 

makers. Current research, called ‘human-in-theloop’ machine learning, integrates human 

participants directly into a machine learning workflow and has shown positive performance 

in many different applications (Cranor, 2008; Yu et al., 2015; Holzinger, 2016; Li, 2017). 

Participants can select models and model parameters for training, evaluate the output, and 

create complicated models of their own. As active participants, decision makers are able to 

build accurate models that, because they took part in building the model, they trust. Weather 

forecasting is another example of a successful forecasting system by supporting close 

communication between forecasting models and decision makers (Murphy & Winkler, 

1974a, 1974b, 1984). Forecasts are frequent, transparent about uncertainty, and provide 

meteorologist’s a condensed model about the future they can rapidly compare to the truth. 

We expect more research will explore how to build stronger forecasting systems by blending 

together the two combination forecasting goals of a more accurate forecast with a trusted 

consensus distribution.

Aggregating expert predictions can outperform statistical ensembles when data is sparse, or 

rapidly evolving. By making predictions, experts can gain insight into how forecasts are 

made, the assumptions implicit in forecasts, and ultimately how to best use the information 

forecasts provide to make critical decision about the future.
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Figure 1: 
A consort diagram that describes the path from collected to analysis-set article. The search 

term used to collect the initial set of articles is reported and all intermediate steps between 

initial and analysis-set articles.
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Figure 2: 
The cumulative proportion (A.) and individual number (B.) of articles published per year. 

The earliest analysis-set article was published in 1992 and most recent in 2018. A sharp 

increase in publication occurred at or near 2010.
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Figure 3: 
The top 5 percent most frequent words used in all analysis-set abstracts. Expert, forecast, 

and judgment are the most frequent and likely related to the search words used to collect 

these articles.
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Figure 4: 
The annual proportion of the top 12 most prevalent word stems among all abstract text 

(Note: the words probability and probabilities were stemmed to probabl). For each year, 

word w frequency was divided by the frequency of all words present in all abstracts.
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Figure 5: 
The complimentary cumulative distribution (CCDF) of the number of experts elicited per 

article (A.). The proportion of articles enrolling less than 10, less than 100, less than 103, 

and less than 104 expert forecasters (B.). The small number of articles enrolling more than 

103 were simulation studies.
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Figure 6: 
Complimentary cumulative distribution of the total number of forecasts made per article 

(A.), and the proportion of articles eliciting less than 10, 100, 103, 104, and 105 forecasts. 

Articles collecting more than 104 forecasts were simulations.
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Table 1:

Terminology from analysis-set articles was collected and grouped by meaning. For each definition, the 

preferred terms is placed on top of all related terms. Definitions and preferred terminology were agreed upon 

by all coauthors.

Related terms Definition Citations

Forecasting support system
Adaptive management A framework for transforming data and forecasts into decisions.

(Fai, 2004; Son, 2013; Alv, 2017;
Bae, 2017;
Joh2018, 2018)

(Probabilistic) Safety 
Assessment
(Probabilistic) Risk 
Assessment

A framework for investigating the safety of a system

Zio (1996), Zio (1997), Bor (2004),
Cle (2007), Tar (2007), Kla (2010),
Kur (2010), Bri (2012), Coo (2014a), 
Hat (2016), Mor (2017),
Han (2018), Wan (2018), Jan (2019)

Information set
Knowledge-base

Data available to an expert, group of experts, or statistical model 
used for forecasting.

(Abr, 1996; Mak, 1996; Bor, 2004;
Gra, 2014a; Bri, 2016; Alv, 2017)

Ill-structured tasks
When changes to an environment impact the probabilistic links 
between cues an expert receives and their effect (how these cues 
should should be interpreted).

(Sei, 2013; Hua, 2016)

Behavioral aggregation
Behavioral combination
Structured elicitation

The support of expert discussion until they arrive at an agreed upon 
consensus distribution. (Cle, 2007; Bri, 2012; Han, 2018)

Mathematical combination
Mechanical integration

The use of mathematical techniques to transform independent 
expert judgments into a single consensus distribution. (Pet, 2006; Cle, 2007)

Judgmental adjustment 
Voluntary integration

Allowing experts to observe statistical forecasts, and provide their 
forecast as an adjustment to a present statistical forecast.

(Son, 2013; Hua, 2016; Alv, 2017;
Bae, 2017)

Integrative judgment
Knowledge-aggregation

Forecasts from experts are incorporated into a forecasting model as 
a predictive variable.

(Mak, 1996; Bae, 2017)

Equal weighted
50–50 Weighting
Unweighted

Assigning equal weights to all experts in a combination method. (Sar, 2013; Coo, 2014a; Gra, 2015;
Alv, 2017; Han, 2018)

Nominal weights Weights obtained by assessing experts performance on a set of 
calibration questions, or on observed data. (Bal, 2015)

Cooke’s method
Classical model

Combining expert opinion via a linear pool where weights depend 
on expert’s answers to calibration questions with a known answer.

(Zio, 1996; Cle, 2007; Bri, 2012;
Sar, 2013; Coo, 2014a; Hor, 2015;
Hat, 2016; Bol, 2017; Mor, 2017;
Han, 2018)

Mixed estimation
Theil-Goldeberger mixed 
estimation

A method for combining expert and statistical forecasts, stacking 
statistical and expert point predictions into a single vector and 
fitting a linear regression model.

(Alh, 1992; Shi, 2013)

Laplacian principle of 
indifference
Principle of indifference

In the context of expert combination, having no evidence related to 
expert forecasting performance, models should weight experts 
equally.

(Bol, 2017)

Brunswik lens model
A framework for relating a set of criteria (or indicators), expert’s 
judgment, and the ”correct” judgment. (Fra, 2011; Sei, 2013)

Wiley Interdiscip Rev Comput Stat. Author manuscript; available in PMC 2022 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

McAndrew et al. Page 36

Table 2:

A prespecified list of questions was asked when reviewing all in-scope articles (See supplemental material for 

a table of categories and the corresponding citations, and a separate spreadsheet of the individual analysis set 

articles and how they were categorized). Frequencies and percentages were recorded for all binary questions. 

Questions a reviewer could not answer are defined as missing, causing some questions to have fewer than 53 

total answers. Answers to questions are on the article level and categories are not mutually exclusive. For 

example, an article could explore both a Frequentist and Bayesian model.

Question Yes Total answers

N (%) N

The primary target was

 categorical 18 (34) 53

 continuous 36 (68) 53

 from a time series 22 (42) 53

A novel method/model was developed 25 (47) 53

The authors implemented a

 Bayesian technique 13 (25) 52

 Frequentist technique 26 (49) 53

The model was

 nonparametric 13 (25) 52

 parametric 38 (73) 52

The model combined

 point estimates 30 (56) 53

 probabilistic distributions 19 (36) 53

Experts depended on data that could be updated, revised, or rapidly change 21 (41) 51
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Table 4:

List of close-ended questions asked of each full-text article. Questions focus on the forecasting target, model, 

analysis data, and experimental design.

Question Possible answers

Forecasting target

Identify the primary predictive target? predictive target

The primary target was categorical Y/N

The primary target was continuous Y/N

The primary target was from a time series Y/N

Experts were given data related to the forecasting target? Y/N

Terminology

List terms specific to aggregating crowdsourced data and quoted definition term,def;term,def

Model

What models were used in forecasting? model1, model2, …, modeln

Please list covariates included in any model cov1, cov2, …, covn

A novel model/method was developed Y/N

Did the authors implement a Bayesian technique? Y/N

Did the authors use a Frequentist technique? Y/N

Did the model account for correlation among experts? Y/N

The model combined point estimates Y/N

The model combined probabilistic distributions Y/N

The model was parametric Y/N

The model was nonparametric Y/N

Analysis data

Experts depended on data that could be updated, revised, or rapidly change? Y/N

Experimental design

A comparative experiment was conducted Y/N

How many expert forecasters were included? integer

How many total forecasts were made? integer

What evaluation metrics were used? metric1, metric2, …, metricn
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